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ABSTRACT: We describe in this paper the theory and construction of the

Tevatron transverse dampers. The goal of these dampers is to keep the beam stable

when we operate at lower chromaticities. The reason for operating at lower chro-

maticities is to improve the beam lifetime. However, the beam becomes unstable

at low chromaticies and thus dampers are required. Also included in this paper

are the damper commissioning notes and their real-life performance.



INTRODUCTION

The motivation for building transverse dampers for the Tevatron is to improve the

lifetime of the proton and pbar beam on their helices during pbar injection. Previous

studies by Y. Alexahin et al [1], showed that when octupoles were used to stabilize the

beam, and chromaticities lowered, the lifetime of the beam of both species on the helix

is improved. However, due to great diÆculties in using octopoles in operations because

of drifts in tunes, coupling and chromaticities at 150 GeV, this method was abandoned

from use in operations. Therefore, when it was decided to resurrect the idea of lowering

the chromaticity to improve beam lifetimes, we had to come up with some other way of

keeping the beam stable and transversely damping the beam immediately came to mind.

The idea behind lowering the chromaticity � comes from the simple observation that

the tune spread �Q is related to the energy spread dp=p by

�Q = �dp=p (1)

Thus, if the chromaticity is lowered, �Q is smaller and the beam will occupy a smaller

footprint in the tune plane. A smaller footprint means that the beam will enclose fewer

resonances which means that less beam will be lost and thus the lifetime is improved.

However, there is a competing mechanism which throws a spanner into this. As long as

there is a non-zero transverse impedance, the beam naturally becomes more unstable when

the tune spread becomes smaller because Landau damping becomes weaker. Stability is

determined by the Keil-Schnell stability criteria which is given by [2]

j(�!q)cohj<�(�!q)HWHMF (2)

where (�!q)coh is the coherent betatron tune shift which comes from the transverse

impedance, (�!q)HWHM is the betatron tune spread measured at half-width half-max
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and F is the form factor depending on distribution. F = 1=
p
3 for an elliptic distribu-

tion. This tells us that when we lower the chromaticity, which decreases (�!q)HWHM,

at some point j(�!q)cohj becomes larger than the rhs of (2), and the beam becomes un-

stable. Therefore, in order to keep the beam stable when we lower the chromaticity, we

have to have a stabilization mechanism and in this case we choose to use active transverse

damping.

In practice, for (36� 36) bunch high energy physics operations after August of 2002,

with both the horizontal and vertical dampers in service, the chromaticities of the hori-

zontal plane is lowered by 6 units and the vertical plane by 4 units from their nominals

which is about 8 for both planes on the central orbit and about 12 units for horizontal and

8 units for the vertical on the proton helix.

Table 1. Parameters of the Tevatron

Symbol Description Value

h harmonic number 1113

� # of bunches 36

� # buckets between bunches in a train 21

� # buckets between trains 140

fr revolution frequency at 150 GeV 47:712 kHz

fRF frequency of RF drive at 150 GeV 53:103639 MHz

fr revolution frequency at 980 GeV 47:713 kHz

fRF frequency of RF drive at 980 GeV 53:104705 MHz

qh fractional horizontal tune 0:583 fr

qv fractional vertical tune 0:575 fr

Since the setup for damping in either plane is identical (except for pickups and kickers),

we will only discuss the horizontal dampers in this paper. And before we plough on with
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the theory, setup and results, the relevant parameters of the Tevatron are shown in Table 1

and the Fourier transform pairs which we will use throughout this paper are

~F (!) =

Z 1

�1
dt e�i!tf(t)

f(t) =
1

2�

Z 1

�1
d! ei!t ~F (!)

9>>=
>>; (3)

The choice of these Fourier transform pairs are dictated by the Hewlett Packard vector

signal analyzer which we use to measure the frequency responses of the damper system.
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THEORY

Let us consider a simple damper system shown in Figure 1. The source of this derivation

comes from McGinnis [3]. Looking at Figure 1, ZE represents the impedance of the

electronics and GB represents the conductance of the beam. Therefore,

IG = GBVout (4)

and the output voltage Vout of the damper is

Vout = ZE

�
Iin + IG

�
= ZE

�
Iin +GBVout

�
9>=
>; (5)

Figure 1 This is a block diagram of a simple damper system.

Solving for the impedance of the entire system ZD, we have

ZD(s) =
Vout
Iin

=
ZE(s)

1�GB(s)ZE(s)
(6)

So, if we examine (6), we can see in its denominator is GBZE , which is the open loop

response of the damper system. To determine the stability of the damper system, let ZE

be of �nite bandwidth with one pole, i.e.

ZE � Z 0E
1 + �s

(7)
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Then

ZD =
Z 0E

�
�
s+

1�GBZ
0

E

�

� (8)

which implies that the pole is at

sp = �1�GBZ
0
E

�
(9)

and thus by inverse Laplace transforming (8), we have the temporal response WD of the

damper system

WD(t) � espt

= e�
1�Re[GBZ0E]

�
t � eiIm[GBZ

0

E]t

= (decay or growth part)� (oscillatory part)

9>>>>=
>>>>;

(10)

Clearly, for dampers we want the decay part of (10), thus

1� Re
h
GBZ

0
E

i
> 0 (11)

or

Re
h
GBZ

0
E

i
< 1 (12)

which means that the real part of the open loop response must be < 1 for damping. This

is the most important result of this section.
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SETUP

In this section, we will go through each part of our setup used for our bunch by bunch

transverse dampers and show that the open loop response GBZ
0
E < 1. Figure 2 is a

block diagram of the setup. The damper system starts at the stripline pickups working in

di�erence mode. A transverse kicker is installed at a position in the Tevatron so that it

has a phase advance of of an odd multiple of �=2 w.r.t. pickup. In order to improve the

dynamic range of the damper system, a method developed by McGinnis called the autozero

circuit shown in Figure 4, is used to virtually centre the beam in the pickup. This signal is

mixed down with the Tevatron RF and low pass �ltered to produce a transverse position

error signal. The error signal is processed with electronics which perform the following:

(i) Suppress the revolution harmonics so that the damper does not �ght the closed

orbit.

(ii) Add delay (T + tpk) where T is the revolution period and tpk is the transit time

from the pickup to the kicker, so that when the pickup detects the signal of bunch 1

it will kick bunch 1 one turn later.

Note that since the delay is (T+tpk), the phase advance �pk between pickup to kicker is

��!q(T+tpk) where !q is the tune frequency. The negative sign comes from the de�nition

of the Fourier transform.

Every block circuit described above and in Figure 2 will be analyzed further in the

following subsections.

Autozero Circuit

The autozero circuit was developed by McGinnis to improve the dynamic range of

the damper system. If the closed orbit of the beam is not in the electrical centre of the
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Figure 2 This is a block diagram which shows the overall setup

of the transverse damper system. Note that the signal of the bunch

which is detected at the stripline pickup is applied approximately one

turn later to the same bunch at the stripline kicker. Each block is

expanded further in Figures 4 and 5.

striplines, then clearly the induced voltage on plate A, VA is not equal to the voltage VB

on plate B. See Figure 3. However, by changing the value of the attenuator connected

on plate B, we can make VA = VB . Thus, the beam is now virtually centred in the

stripline pickup and the dynamic range is immediately improved because we have essen-

tially removed the DC component of the error signal, i.e. we can have much more gain

downstream without saturating the ampli�ers due to the DC component.

In order to change the attenuation on plate B without human intervention, a feedback

loop is built to automatically turn the variable attenuator to minimize the DC component.

This is called autozeroing. We refer to both Figures 3 and 4 in our description. The
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Figure 3 The mix down process which produces the autozero error

signal is shown here. The massaged signal is drawn at the output of

each device.

doublets on plates A and B are sent into the summer and then mixed down with the RF.

The mixer when phased correctly, 
ips the sign of one half of the doublets so that they

look like two peaks. These two peaks go through a low pass �lter which smears out the

region between the peaks so that it looks 
at. This is where sample and holding can be

applied. The sample and held signal is sent into another low pass �lter which has a roll

o� frequency which is much lower than the tune frequency so that transverse motions

of the beam which are slower than the betatron motion are corrected. The error signal

is checked against a window threshold set by the user. If the error signal is outside the

window threshold, the variable attenuator is rotated in the appropriate direction until the

error signal is within the window boundaries. In this setup, the motor moves at full speed

in either direction and so the feedback �lter must not be too small.

Even with the motor moving at full speed, the autozero circuit is the slowest part in

the damper circuit because it takes � 0:5 s for the attenuator to rotate from its position
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Figure 4 This �gure shows the block diagram of the autozero cir-

cuit.

when the beam is on the central orbit to its position when the beam is on the helix which

is � 8 mm w.r.t. the central orbit.

Digital Notch Filter

The digital notch �lter consists of two digital delay lines when summed together pro-

duces notches at the revolution harmonics. Its response is given by

Rnotch(!) = 1� e�i!NT (13)

where T is the revolution period and N is the number of revolution periods in the delay.
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Figure 5 The digital notch �lter.

The notch �lter clearly suppresses the revolution harmonics at !r = 2�fr since Rnotch =

0 whenever
! = 2M�=NT M 2 Z

f =
M

N
fr

(14)

i.e. a notch appears at the revolution harmonic fr wheneverM is a multiple of N . Another

observation is that the number of notches between 0 and fr is N . Figure 6 shows the

e�ectiveness of the notch �lter. The revolution harmonic is suppressed by 50 dB.

A more important consideration is the phase around
�
`+ 1

2

�
fr; ` 2 Z because our

tunes are around here. The phase of the digital notch �lter is

arg [Rnotch(!)] = tan�1
�

sin!T

1� cos!T

�
(15)

and for the case when T = 2�=!r, arg [Rnotch(!r=2)] = 0. Therefore, we can expand (15)

about !r=2 to get

arg [Rnotch(!)] = � �

!r

�
! � !r

2

�
+O

h
! � !r

2

i3
(16)
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Figure 6 The notch �lter suppresses the revolution harmonic by

50 dB.

Therefore, the small addition in phase for the horizontal tune sidebands for the Tevatron

at 0:417 and 0:583 is +15Æ and �15Æ respectively. The same result applies for other values

of `.

Phase Advance

For damper operation, the phase advance �pk between the pickup and the kicker must

be an odd multiple of �=2, i.e. �pk = �!q(T + tpk) = (2n+ 1)�=2 where n 2 f0; 1; 2; : : :g.
If �pk is not an odd multiple of �=2, we can use two pickups to create a virtual pickup so

that �pk = (2n+1)�=2. Although, we are lucky to have a good enough phase advance for

both the horizontal and vertical planes in our system, we will, nevertheless, go through

the maths to see how we can make a virtual pickup with two pickups. A good enough

phase advance here means that the shoulders around the real parts of the resonances of
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Figure 7(b) do not go too negative and thus limit the amount of gain we have. In practice,

80Æ < �pk < 100Æ.

We can think of the beam as executing simple harmonic motion with betatron frequency

�!q and for our simple analysis we will ignore the beta functions at the pickup and kicker.

Even in this simple analysis, we can write the voltage Vp seen at the pickup as a sum of

Æ-functions because the beam is only detected once per turn at the pickup, i.e.

Vp(t) = ~Vp

1X
n=�1

cos(�!qt)Æ
�
t� nT

�

=
~Vp
2

"
1X

n=�1

ei�!qtÆ
�
t� nT

�
+

1X
n=�1

e�i�!qtÆ
�
t� nT

�#

) FT
h
Vp(t)

i
= ~Vp(!) =

~Vp
2

2
4 1X
n=�1

e
i

�
�!q�!

�
nT

+
1X

n=�1

e
�i

�
�!q+!

�
nT

3
5

(17)

where T = 2�=!r is the revolution period, We can apply the Poisson sum formula
1X

n=�1

e2�n
!
!r = !r

1X
n=�1

Æ
�
! � n!r

�
(18)

to ~Vp(!) and get

~Vp(!) =
~Vp!r
2

2
4 1X
`=�1

Æ
�
! + `!r � Æ!q)

�
+

1X
`=�1

Æ
�
! + `!r + Æ!q)

�35 (19)

where �!q = N!r + Æ!q, N 2 N . and we obtain a spectrum of betatron tune sidebands

Æ!q around the revolution harmonics !r.

If the time separation between the pickup and kicker is tpk, but we kick the beam

1 turn later, then the phase advance from the pickup to the kicker is �pk = ��!q(T + tpk)

(the negative sign comes from the de�nition of the Fourier transform). Thus the voltage

seen at the kicker is

Vk(t) = ~Vp

1X
n=�1

cos(�!qt+ �pk)Æ
�
t� nT

�

=
~Vp
2

"
ei�pk

1X
n=�1

ei�!qtÆ
�
t� nT

�
+ e�i�pk

1X
n=�1

e�i�!qtÆ
�
t� nT

�# (20)
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Applying the same technique as before, we see that the Fourier transform of Vk(t) is

~Vk(!) =
~Vp!r
2

2
4ei�pk 1X

`=�1

Æ
�
! + `!r � Æ!q)

�
+ e�i�pk

1X
`=�1

Æ
�
! + `!r + Æ!q)

�35 (21)

The interpretation of these results show that when the phase advance from the pickup to

kicker is �pk, then the upper sideband is rotated by +�pk, and the lower sideband must

rotate by ��pk.

In particular if �pk = ��=2, we can illustrate the response of a damped simple harmonic

oscillator with sidebands at `!r and (`+1)!r when measured at the pickup. See Figure 7.

Using what we have discussed above, the sidebands at `!r + Æ!q and (`+ 1)!r + Æ!q will

rotate by �+
pk

= ��=2, and become real and positive at the kicker. Similarly, the sidebands

at `!r��!q and (`+1)!r��!q must rotate by ��pk = +�=2 from the pickup to the kicker

and they also become real and positive. To get damping, we have to multiply Figure 7(b)

by �1.

Making a Virtual Pickup

Next, let us consider the case that we want to make a virtual pickup so that �+
pk

= �=2.

In order to do this, we will use two pickups and vectorially add their responses so that a

virtual pickup is created which has a �=2 phase advance between the kicker and it. Let

the phase advance between the pickup and kicker be �+1 for pickup 1, �+2 for pickup 2, and

�+v for the virtual pickup. Then if we think of the frequency response as a vector in the

Argand plane, we can write the beam response R1 and R2 at each pickup 1 and 2 as

R1 = A1

�
cos�1
sin�1

�

R2 = A2

�
cos�2
sin�2

�
9>>=
>>; (22)

where A1; A2 2 R are the magnitude of each of the responses. De�ne �1; �2 2 R to be the
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Figure 7 In graph (a), we show representative sidebands of a SHO

about `!r and (`+ 1)!r when measured at the pickup. The shaded

region shows the sidebands which we call the upper and lower tune

sidebands about
�
`+ 1

2

�
!r i.e. the half integer. If �

+
pk

= ��=2, then
the sidebands from the pickup are rotated so that they are now real

and positive at the kicker. See graph (b). The dashed vertical line is

at
�
`+ 1

2

�
!r.

parameters when determined produces the required virtual pickup, i.e.

�1R1 + �2R2 =

�
cos�v
sin�v

�
=

�
0
1

�
if �v = �=2 (23)

when solved for �1 and �2, gives us

�
�1
�2

�
=

1

sin (�1 � �2)

 
1
A1

cos�2

� 1
A2

cos�1

!
(24)

Therefore, with the appropriate attenuation or amplifaction of the outputs of pickup 1 and
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2, we have produced a virtual pickup with the desired phase advance between it and the

kicker.

Delay through Electronics T + tpk

The goal of of this section to show how we can set the delay in the damper system

so that when we detect bunch n at the pickup, we will kick the same bunch n some time

later. To ensure that we do indeed do this, we have to add cable to the damper electronics

so that the the delay through the damper system is T + tpk. See Figure 8.

Figure 8 The transit time between the pickup and the kicker is

tpk. The delay through the damper electronics is T + tpk, so that the

bunch detected at the pickup is kicked one turn later.

In constrast with damper operation where we measure the beam position and then kick
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the beam, when we do an open loop measurement, we kick the beam and then measure the

position of the beam at the pickup. Thus, the phase is accumulated by going through the

lower part of the ring of Figure 8 which has a time delay of T � tpk, and then through the

damper electronics which has a time delay of T + tpk. Therefore the accumulated phase

�kp(`) for every tune sideband is

�kp(`) = �
h�
`!r � Æ!q

��
(T � tpk) + (T + tpk)

�i
2�

= �
�
�4�Æ!q

!r

�
2�

9>>=
>>; (25)

where [:]2� is the modulo 2� function. This means that when we get the delay exactly

right, the upper sideband and the lower sideband have equal and opposite �kp.

Timing In Recipe

In practice, to time in the damper system which does not have �pk = (2n + 1)�=2,

n 2 Z, we have to have two pickups A and B and do the following:

(i) Start with pickup A, by using the open loop response from pickup A to the kicker,

adjust the electronic delay so that the real part of the upper sideband of every

harmonic `!r looks the same. If the delay is right, the real part of the lower

sideband of every harmonic `!r will also naturally look the same.

(ii) Calculate the phase advance �pk from the open loop response with the delay found

using (i) by using the observation that the real part of the upper and lower side-

bands look the same for every harmonic `!r if the phase advance between pickup

and kicker is an odd multiple of �=2 it will look like Figure 7(b).

(iii) Repeat (i) and (ii) for pickup B.

(iv) Using the phase advances found for pickups A and B to the kicker, we can use

equation (24) to create the virtual pickup which has an odd �=2 phase advance to

17



the kicker.

(v) Check that the open loop response with the virtual pickup to the kicker looks like

Figure 7(b).

Uniform Triggers

In order for the digital delays to work they have to be triggered. The triggers which we

use are uniform in time and they trigger in places even when the beam is not present. The

reason will become apparent later in the discussion. At present, in Tevatron operation,

there are three trains of 12 bunches each. In each train, the bunches are spaced 21 buckets

apart. The spaces between the trains are the abort gaps and they take up 140 buckets

each. The occupied buckets are as follows

1;22;43; : : : ;211;232 j train 1

372;393;414; : : : ;582;603 j train 2

743;764;785; : : : ;582;603 j train 3

Notice that all bucket spacings are divisible by 7. Therefore, if we have triggers which

are spaced exactly 7 buckets apart, the digital delays will sample all the bunches as well

as alot of empty space. The reason for having more triggers than necessary is to allow

us to use reasonable cable delays to �ne tune the system delay to ensure that the correct

buckets are kicked. In the worst case scenario for this trigger pattern, the cable length

will be 7 buckets=2 � 70 ns for correctly hitting the right bucket. While for triggers where

there are bunches only, the worst case scenario will be 140 buckets=2 � 1:3 �s of cable!

(Recall that 1 ns is about 1 foot of cable.)
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RESULTS

We measured the open loop response of the damper system by breaking the loop as

shown in Figure 9. The Tevatron is �lled with 36 bunches of protons in the pattern

discussed in Uniform Triggers. The frequency response as found at 150 GeV, is shown in

Figure 10(a). After we add in 17 �s of delay, the frequency response becomes nice and

symmetric about fr=2 as shown in Figure 10(b). Compare this to Figure 7(b). In this

case, it is quite obvious that the phase advance is close to �90Æ.

Figure 9 The loop is broken just downstream w.r.t. mixer and a

vector signal analyzer (VSA) is connected there.

To calculate the phase advance between kicker to pickup, we have to make the imag-

inary part of the frequency response of Figure 10(b) look anti-symmetric about fr=2 by

taking out the phase advance. We �nd that the phase advance required to make the tune

sidebands look antisymmetric is �(85 � 5)Æ. The result with �+
pk

= �85Æ is shown in

Figure 11. It is interesting to compare the experimental results with what was discussed

under Setup and Figure 7.
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Figure 10 These graphs show real part of the response before and

after adding 17 �s to the digital delay. To get the real part of the

response to be negative, we have to multiply by �1 in the electronics.

We have superimposed all the three graphs on top of each other by

shifting the frequency of mode 9 by �9fr and mode 24 by �24fr.
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Figure 11 By taking out the phase advance of �85Æ, we can make

the imaginary part of the response look anti-symmetric about fr=2.

Again, the three graphs have been superimposed each other by shift-

ing the frequency of mode 9 by �9fr and mode 24 by �24fr. The

discontinuity at fr=2 comes from a small DC o�set in the original

response data.

Comparing with MAD Input Data

We can compare our results to that of the MAD lattice �le which has the theoretical

�� values, i.e. the lower sideband w.r.t. fr or the upper sideband w.r.t. fr=2. The phase

advance 'pk from the pickup to the kicker as found in the lattice �le v3h01v2 new new.lat

is �43Æ.y The total phase going one turn through the Tevatron is 'Tev = �(20�360+211)Æ

and the phase from the notch �lter for Æ!q=!r = 0:583 is 'f = �15Æ. Adding these phases
together, we obtain ��

pk
=
h
'pk+'Tev+'f

i
360Æ

= �
h
269Æ

i
360Æ

= +91Æ. Thus �+
pk

= �91Æ

which is extremely close to what we have measured �(85� 5)Æ from the previous section.

y If we had blindly used the lattice �le and placed the pickup and kicker in the Tevatron so
that the phase advance between them is �90Æ, then we de�nitely would have had to use
two pickups because we had had forgotten to add the phase accumulated from one turn.
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Figure 12 There is a huge noise spike at 688:8 kHz. This is cured

by replacing RG58 cable with strip
ex at the input and output of the

IF ampli�er (See Figure ).

Dampers' Bane: Noise

So, the next obvious thing to do is to close the loop and watch the dampers do its

thing. However, our �rst attempt turns out to be rather disappointing | noise plagued

the system. The main sources of noise are:

(i) Digitization noise. It is well known that digitization produces quantization noise

and it is the least signi�cant bit which contributes to the noise 
oor. With the

14 bit ADC and DAC which we use, we expect the noise 
oor to be lower by

�36 dB compared to an 8 bit system (at 6 dB per bit). In fact, it is extremely

optimistic to assume that we can use all the bits. We discovered that the di�erential

ampli�er used just upstream of the ADC contributes about 3:5 bits of noise, which

in e�ect, lowered the number of e�ective bits to 10:5 bits. In our defence, the
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Figure 13 There is band of low frequency noise (between 10 to

15 dB) around 10 kHz. This comes from the pbar RF coupling into

the proton RF.

choice of di�erential ampli�er is recommended in the ADC reference design by

Analog Devices.

(ii) Coupling between cables. RG58 is not good for systems with high gain because it

does not have a very dense braid for shielding RF. Figure 12 shows a noise spike

at 688:8 kHz which is cured by replacing RG58 cable with strip
ex at the input

and output of the IF ampli�er (See Figure ). Strip
ex has two levels of shielding:

a dense braid and a copper �lm winding which produces superior shielding. This

results in a shielding eÆciency of 90 dB compared to 40 dB for RG58.

(iii) General coupling from the \ether". The service building where the damper elec-

tronics are located has alot of background RF bouncing around. In particular, the

low frequency band of noise shown in Figure 13 comes from the coupling of pbar

RF located on a patchpanel into the proton RF on the same patch panel. The
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solution is to relocate the pbar RF patchpanel into an adjacent rack.

With the damper noise under control, we found that the emittance growth from

damper noise with the loop closed is � 1� mm�mrad�hr�1 at 150 GeV.

Closing the Loop

Finally, we can close the loop and damp. We injected 36 bunches into the Tevatron

and sat at 150 GeV for this set of experiments. Figure 14 shows the e�ect of closing

the loop. The red curve is the noise spectrum measured at A of Figure 2 with the power

ampli�er o�. The power ampli�er is turned on, thus closing the loop, and we see that there

is a suppression at the horizontal tune sidebands of about 6 dB (the purple curve). The

noise 
oor is increased by about 2 dB in the middle of the spectrum. From the discussion

in Appendix I, the closed loop gain of the damper is 6 dB at the horizontal tune. The

full width at half min (fwhm) of the absorption line gives the damping time of the damper

for the 361:6 kHz tune line which is 0:55 ms � 26 turns in the Tevatron. (See Appendix I)

An immediate question which we wanted to answer is how sensitive is the damper to

coherent motion of the beam. Clearly, we do not see the tune lines on the red curve of

Figure 14 which means that the tune lines must be below the noise 
oor of the damper

system which is �64 dBm. To see how sensitive our electronics are we injected RF at

point A and measured at point B of Figure 15. The injected RF power is �100 dBm

(purple curve) and the output power (blue curve) is > 10 dB above the noise 
oor.

To see what �100 dBm corresponds to in transverse position, we start with the usual

relationship between transverse position �x w.r.t. the electrical centre and the beam cur-

24



Figure 14 The suppression of the horizontal tune sidebands (purple

curve) when the loop is closed compared to the red curve when it is

open.

Figure 15 In order to measure the sensistivity of the electronics to

coherent motion of the beam, we inject at A an RF signal which we

then measure at B.
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Figure 16 This shows the sensitivity of the dampers to coherent

oscillations. The purple curve is the RF input at A and the blue curve

is the output at B. The central peak of the blue curve is the leakage

from the mixer of the proton RF.

rent I. The current on plate A and B are given by (See Figure 3)

IA =
I

2

�
1 +

2�x

d

�

IB =
I

2

�
1� 2�x

d

�
9>>=
>>; (26)

where d is the distance between the two plates. The di�erence signal �I = (IA � IB) =

2I�x=d and suppose the impedance the di�erence signal sees is Z, then the di�erence

voltage induced by the beam is IZ and the rms power is thus �I2Z=2 which in dBm is

10 log10(�I
2Z=2�103). Putting in the numbers Z = 50
, I = 10 A and d = 3�(2:54) cm,

we obtain �x = 2� 10�7 cm when the input power is �100 dBm. However, this is quite

optimistic and we must take into account the attenuation of the cables (about 300 feet of

heliax at 1dB/100ft between 30MHz to 200MHz) and attenuators (10 dB) of the autozero

box. Doing so gives a more realistic value of 8� 10�7 cm or 8 nm which is the size of the
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coherent motion.

To prove that we are indeed damping the beam, we lower the horizontal chromaticity

from its usual 8 units to �3:5 units with the horizontal dampers on and the beam re-

mains stable throughout this exercise. However, when we turn the dampers o�, the beam

immediately goes coherent and falls out of the Tevatron.

Operations

In operations, we lower the horizontal chromaticity by about 6 units and vertical

chromaticity by about 4 units from their nominals of 8 units for both planes on the central

orbit and 12 units for the horizontal and 8 units for the vertical on the proton helix. For

store #1868 shown in Figure 17 which had the horizontal chromaticity lowered by 5 units

and vertical lowered by 2 units, the e�ect of the lower chromaticity is dramatic. Before

the dampers are turned on, beam lifetime T:IBEAM (total beam current) and C:FBIPNG

(proton beam current) is poor. The 1=e time is about 1 hr for C:FBIPNG at this time.

When the dampers are turned on for pbar injection and chromaticities lowered, we see that

the C:FBIPNG 1=e lifetime is improved by a factor of 3 to 3 hr. At the completion of pbar

injection, just before we ramp, the dampers are turned o� and chromaticities restored to

nominal. Again, we see that the T:IBEAM and C:FBIPNG lifetime reverts back to being

poor again.

It is interesting to note that for high energy operations, the choice of chromaticities

is dictated by pbar lifetime. When we operate at low chromaticity, we lose about 1% of

the pbars during injection compared to 10% with higher chromaticity. We cannot lower

the chromaticities to too low a value because we do not have any transverse pbar dampers

at this time. During injection the pbar chromaticity is around 2 and 4 for horizontal and

vertical respectively because the nominal chromaticity on the pbar helix is about 8 for
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Figure 17 This plot shows the damper in action. Total beam

current is T:IBEAM (the sawtooth shape comes from pbars being in-

jected). C:FBIANG shows the increase in pbar current as they are be-

ing injected. C:FBIPNG is the proton beam current only. T:SHPWR

and T:SVPWR are the horizontal and vertical Schottky powers which

rise up by about 30 dB when the dampers are turned on.

both planes when the central orbit chromaticity is set to 8 for both planes.

Coupling

Coupling is an important issue when operating transverse dampers because we have

two planes to worry about. We discover to our dismay (although we should not have

been surprised) that if the Tevatron is not decoupled to a tune split to better than 0:005,

the dampers of one plane will excite the other plane. Figure 18 clearly demonstrates the

coupling problem.
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Figure 18 The purple curve shows damping in the vertical plane.

However, the orange curve shows that the vertical damper is exciting

the beam horizontally.

The purple curve shows that when the vertical damper is on and horizontal o�, it

produces tune suppression. However, the horizontal tune is excited. So, if we have dampers

of both planes on, they tend to �ght each other and cannot keep the beam stable when

the chromaticity is lowered.

Mysteries

We catalogue here some observations which, at present, we have no answers for.

(i) The dampers described in this paper can only damp rigid coupled bunch modes. It

does not have the bandwidth to damp head-tail modes. This is easily demonstrated

by lowering the horizontal chromaticity of a single bunch until it becomes unstable

and falls out. With or without the dampers, for a single bunch, when the horizontal
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chromaticity is about 2 units, the bunch becomes unstable and falls out. This

is consistent with our dampers not being able to keep head-tail modes stable.

However, when we have 36 bunches in the Tevatron, the beam remains stable even

when we lower the chromaticity to negative values. This seems to indicate that the

single bunch instability threshold has been modi�ed when there are 36 bunches in

the Tevatron.

(ii) Lowering the chromaticity does not always improve the lifetime of the proton beam

despite Figure 17. The na��ve idea that by lowering the chromaticity, the footprint of

the beam in the tune plane becomes smaller and thus enclosing fewer resonances,

and therefore improving the lifetime does not seem to be borne out every time.

Some unknown essence of the proton beam seems to be just as important as the

value of the chromaticity. However, as was discussed earlier in Operations, at times

the dampers do improve the lifetime. Note that unlike the proton beam, the pbar

beam lifetime is always improved with lower chromaticity. Update 19 Dec 2002

to 12 Jan 2003 (shutdown): The proton beam lifetime is improved dramatically

(�5) on the proton helix all the time when the chromaticity is lowered. Somehow

the proton behaviour has changed after our feeddown decoupling work on the helix

compared to stores before this date.
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CONCLUSION

The transverse dampers have been used in high energy physics operations and enough

data have been gathered to show that the dampers do no harm to the protons or pbars at

150 GeV. With low chromaticity the lifetime of the pbars is always improved, although the

proton lifetime is improved some of the time on the helix. Thus the value of the dampers

for high energy operations is mainly for keeping pbars in the Tevatron during injection.

However, mysteries remain, which when solved will enable us to assess the operation of

the transverse dampers better.
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APPENDIX I

In this appendix, we will derive the 1=e time and the gain of the damper from its

frequency response. Suppose the open loop response of the damper is described by a

constant gain G and a damped simple harmonic oscillator (SHO). See Figure 19. In the

time domain, the equation of motion of a damped SHO is

�x+ � _x+ !20x = F (t) (27)

where � is the damping constant which comes from the damper, !0 the natural frequency

of the SHO and F (t) some external forcing function. Without loss of generality, let us

suppose that at t = 0, x(0) = _x(0) = 0, then the Laplace transform of (27) trivially yields

the response function

Hsho =
1

s2 + �s+ !20
(28)

This, then gives us the open loop response Hopen

Hopen = GHsho =
G

s2 + �s+ !20
(29)

When we close the loop, we see that the closed loop response Hclosed is

Hclosed(s) =
1

GHsho(s)
=

1

G

�
s2 + �s+ !20

�
if G� 1 (30)

which basically tells us that the closed loop response produces an absorption spectrum

when measured on a spectrum analyzer. In other words, the resonant spectrum of (29)

becomes an absorption spectrum in (30) when the loop is closed.

So by using our knowledge of the resonant spectrum, we can deduce the usual param-

eters that describe the damper when we use the absorption spectrum instead. The 1=e

damping time is given by � = 2Q=!0 where Q = !0=�!fwhm, �!fwhm is the full width of

the frequency at half the minimum amplitude. And �nally, the maximum gain of the loop

is the inverse of the minimum amplitude.
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Figure 19 This is a block diagram of a damper for a simple har-

monic oscillator where the open loop response is GHsho.
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